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LETTER TO THE EDITOR 

The number of convex polygons on the square and 
honeycomb lattices 

A J Guttmannt and I G EntingS 
t Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 
$ CSIRO Division of Atmospheric Research, Private Bag 1 ,  Mordialloc, Victoria 3195, 
Australia 

Received 23 October 1987 

Abstract. A subset of the set of self-avoiding polygons (SAP) embeddable on the square 
lattice which display the property of convexity is defined. An algorithm for their enumeration 
is developed, and from the available series coe5cients the exact generating function is 
found. The singularity structure appears similar to that of the unsolved SAP problem, but 
with different critical exponents and critical points. 

The enumeration of convex polygons allows the extension of the existing series for 
the square lattice SAP by one term. For the honeycomb lattice similar results have been 
obtained, despite a less natural definition of convexity. 

We are currently engaged in a project to substantially extend the series expansions of 
the square and honeycomb lattice self-avoiding polygon (SAP) generating functions, 
as well as determining the caliper diameter of square lattice polygons (Privman and 
Rudnick 1985). Our method consists of a refinement of the data structuring of the 
transfer matrix algorithm originally developed by Enting (1980) and generalised for 
other lattices by Enting and Guttmann (1985). In the latter paper we obtained the 
number of SAP on the square lattice to 46-step polygons. In an attempt to go further, 
we have reached 54 steps by direct enumeration, with the 56-step polygon given 
incompletely. In considering the missing component in the 56-step polygon enumer- 
ation, we came to realise that it was precisely the number of convex polygons of 56 
steps. Convex polygons are defined as self-avoiding polygons whose number of steps 
equals the perimeter of their minimal bounding rectangle. Any vertical (horizontal) 
line drawn through the polygon between any two vertices of the graph will cut precisely 
two horizontal (vertical) bonds. 

This led us to consider the enumeration of convex polygons, which was a far simpler 
computational process than the original SAP enumeration problem. Further, we realised 
that the convex polygons are a superset of the ‘staircase polygons’ considered by Lin 
et a1 (1987), and are hence of considerable interest in their own right. 

Next, we show how the convex polygons may be enumerated, and later we determine 
the precise recurrence relation for the coe5cients by systematic searching. We have 
solved this recurrence relation and obtained the exact solution in closed form. An 
analysis of the generating function shows a complex singularity structure which appears 
to be identical to that expected in the full SAP problem. 

Earlier it was noted that the basic enumeration technique for self-avoiding polygons 
described by Enting (1980) could be augmented by a simple correction term, so that 
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one extra term was obtainable with little extra effort. The basis for the algebraic 
technique of polygon enumeration is that any square lattice polygon of perimeter p 
must be embeddable in a rectangular grid of perimeter p ’ s p .  

Thus, by counting all polygons that occur in any of the rectangles of perimeter 
p ’ s  54, we have counted all polygons with p s 54. However, if the series are retained 
to sufficient order, counting all polygons in rectangles p’  s 54 also counts the majority 
of polygons with p = 56. In fact, the only polygons with p = 56 that are not counted 
by the above method will be 56-step polygons that fit into a rectangle of perimeter 56 
but into no smaller rectangle, i.e. convex polygons. 

If the honeycomb lattice is treated as a square lattice with certain bonds missing, 
then the above remarks apply equally well to enumerations of honeycomb lattice 
polygons. It should be noted that the definition of convexity (cutting any horizontal 
or vertical line twice at most) refers to the square lattice representation that is used in 
the algebraic enumeration techniques. This definition of convexity has no natural 
interpretation on the honeycomb lattice and so the class of convex polygons is of little 
interest except as correction terms. For this reason we postpone the discussion of the 
polygon generating function for convex polygons on the honeycomb lattice to a 
subsequent paper in which we utilise the convex polygon enumerations to extend the 
SAP series. 

The enumeration of convex polygons appears to be related to some of the ‘directed’ 
lattice problems that have recently been of interest, such as crystal growth models or 
disorder point solutions (Enting 1977), spiral self-avoiding walks (Guttmann and 
Wormald 1984, Guttmann and Hirschhom 1984, Szekeres and Guttmann 1985), 
directed percolation (Kinzel 1983, Baxter er a1 1988) and cellular automata (Wolfram 
1986). A subset of the set of convex polygons has recently been enumerated (in closed 
form) by Lin et a1 (1987). Lin et a1 considered the more restrictive problem of 
anisotropic spiral self-avoiding loops. In such loops a west (east) step cannot be 
followed by a north (south) step. Further, if the first step is north (south), the closing 
step cannot be west (east). These constraints restrict the shape of the polygon to be 
a rising staircase followed by a descending staircase. All such polygons satisfy our 
definition of convexity but, as we shall show, represent a fraction n-2.5 of the total 
number of convex polygons. 

While the convex polygon problem on the square lattice may repay further investiga- 
tion in the context of directed problems, and is clearly of interest in its own right, the 
important point for the purpose of obtaining correction terms to the general polygon 
expansion is that convex polygons can readily be enumerated using transfer matrix 
techniques. The number of vector components in the transfer matrix formulation is 
very much smaller than in the general polygon enumeration problem. Furthermore, 
specific expressions describing the column-to-column evolution of the vectors can be 
written down. 

The enumerations for bounding rectangles with N vertical steps and M horizontal 
steps are carried out separately for each N. Each iteration of relations (2.3)-(2.6) 
increases M by 1. There are four vectors involved for each ‘column state’; we denote 
their components by R i m  , Si,, T i ,  and U$, . They denote the number of ways loops 
can be built up column by column such that, in the j th of the M columns of horizontal 
bonds, the two horizontal bonds are in positions m and n out of the possible range 
0-N. The indices are thus restricted to 
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The four vectors refer to particular classes of a partly completed ring. The components 
of the vectors are simple integers rather than truncated series. It is not necessary to 
keep track of the number of steps; the convexity requirement determines this uniquely 
given the configuration of bonds and the history of contact with the bounding rectangle. 

R refers to loops starting from the left that have not yet reached either the top 
(row 0) or the bottom (row N ) ;  S refers to loops starting from the left that have 
reached the top but not the bottom; T refers to loops starting from the left that have 
not yet reached the top but have reached the bottom; U refers to loops starting from 
the left that have reached both the top and the bottom; the number of convex polygons 
of 2( M + N )  steps in the M x N rectangle is thus 

The initial conditions (always subject to constraint ( 1 ) )  are 

UAN = 1 

ug=o otherwise 

~ i l ~ = ~  O < i < N  

Til. = 0 otherwise 

sg = 1 O < j < N  

s;. = 0 otherwise 

R b = l  O < i < N  

RAj = 0 for all j 

( 6 )  = o for all i. 

The basis of the evolutionary equations for convex polygons, is that, if the upper 
(lower) branch of a loop has not yet reached the top (bottom) of the rectangle, then 
it cannot move away from the top (bottom). If the upper (1ower)branch of a loop has 
reached the top (bottom) it cannot move towards the top (bottom). By considering 
all possible ways in which such elements can combine, as shown in figure 1, we obtain 
the equations: 

j - I  

m = i  n = m + l  
R Y 1 =  f: Rk,, O < i < j < N  (7) 

N - 1  N - 2  N - I  

T ; , I =  T L N +  Rk,, O < i < N  
m = i  m = i  n = m + l  

I i N - 1  

U%'= ukN+ skn O < ~ < N  
m =O m=O n = i + l  
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m a 0 , r i  
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I 
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Figure 1. Graphical representation of the transfer matrix equations for generating convex 
polygons of width N Each diagram represents one of the single or double summations 
in the speciEed equation (7)-(lo), with the ordering of diagrams following the order of 
terms in the equation. The boundaries 0 and N are shown as dotted lines. The diagrams 
show the evolution from column k (left) to column k + 1 (right). The broken curve shows 
(schematically) the connection to the left of column k and whether these connecting bonds 
pass through the 0 and/or N boundaries. The horizontal bonds are indexed i, j, m, n as 
in the equations and the limits on these indices (which define the limits on the summations) 
are shown. The index on the left of each inequality is the index of the bond opposite 
which the inequality is shown. Two-sided bounds ( a  < j <  b) on a bond j are shown as 
j < a ,  <b. 



Letter to the Editor L47 1 

O < j <  N 

N-1 N- l  N-2 N-l  

U;;'= U,",+ 1 Tk,N+ S o n +  1 C Rk,n. 
m = l  n = l  m = l  n = m + l  

We can treat the honeycomb lattice as a square lattice with half the horizontal 
bonds missing. The columns of horizontal bonds alternate between having all even 
bonds missing and all odd bonds missing. We have to consider and sum over two 
classes of rectangle-those starting on an 'even' column and those starting on an 'odd' 
column. This corresponds to the algebraic polygon enumeration techniques which 
determine the number of polygons per pair of sites, so as to give series with integer 
coefficients. The two classes of rectangles must be considered separately. In each 
class, a restricted set of equations (2)-(10) apply. For class 1, the quantities R, S, T 
and U are zero unless both i and j are odd when k is odd and both even when k is 
even. For class 2 we require i, j to be both odd (even) when k is even (odd). These 
restrictions apply to all subscripts including the 0 and N that appear in special cases. 

The above scheme for the square lattice was implemented as a FORTRAN program 
on a DEC Micro Vax I1 computer and, after development, transferred to the University 
of Melbourne Cyber 990. Utilising 64-bit integers, the program ran in a few seconds, 
producing polygons to 64 steps. Beyond this size, integer overflow occurred, and while 
we could have obtained longer series by using residue arithmetic, the series to 64 steps 
was more than adequate to enable the exact generating function to be obtained, and 
in any case gave us the required correction term. Because of the smaller numbers 
involved, the honeycomb case could, in principle, be extended further without causing 
integer overflow. However, initially 62-step polygons were enumerated on a PC 
compatible microcomputer as a test run and these proved more than adequate to 
determine the recurrence relation exactly. The coefficients obtained are shown in 
table 1. 

We have analysed the series by searching for recurrence relations among the 
coefficients, as originally outlined by Guttmann and Joyce (1972) and Joyce and 
Guttmann (1973). This is equivalent to the method of differential or integral 
approximants subsequently discussed by Fisher and Au-Yang (1979) and Hunter and 
Baker (1979). 

We define the generating function as 
al 

P(x)=x-2  c pznxn 
n = 2  

where the term l /x2  takes into account the fact that the first non-zero coefficient is p4. 
By a systematic search, we find that the coefficients pln satisy the recurrence relation 

[(n + 1)2-9.5(n + 1)+ 15]p2,+,-(8n2 - 58n + 57)p2n+4 

= 78.2 + 2284 - 448,,+ 158",-1. 

+ [ 16( n - 1)2 - 80( n - 1) + 36]p2,+2 

(12) 
The class of recurrence relations within which the search was made is inspired by the 
exact results for the two-dimensional Ising model magnetisation and specific heat. We 
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Table 1. The number of convex polygons of N steps embeddable on the square and 
honeycomb lattices. 

N Square Honeycomb 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 

1 
2 
7 

28 
120 
528 

2 344 
10 416 
46 160 

203 680 
894312 

3 907 056 
16 986 352 
73 512 288 

3 16 786 960 
1359763 168 
5 815 457 184 

24 788 842 304 
105 340 982 248 
446 389 242 480 

1 886 695 382 192 
7955156287456 

33468262290096 
140 516 110 684 832 
588 832 418 973 280 

2 463 133 441 338 048 
10286493304041104 
42 892 130 604 098 656 

178592047539343200 
742609229473744320 

2 439 630 075 430 725 288 

0 
1 
0 
3 
2 

10 
14 
40 
74 

176 
358 
798 

1670 
3 626 
7 638 

16 366 
34 462 
73 230 

153 830 
324 896 
680 514 

1 430 336 
2 987 310 
6 253 712 

13 025 954 
27 176 052 
56 465 878 

117 458 820 
243 507 250 
505 239 624 

seek recurrence relations whose coefficients are linear, quadratic, cubic, etc., poly- 
nomials in n, with an appropriate inhomogeneous term as shown. The ‘depth’ of the 
recurrence, i.e. the value of m where the coefficient P,, is expressed in terms of Pn-,, 
P,,-2,. . . , P,-,,  is determined by the number of available series coefficients. Twelve 
terms of the series are needed to get the recurrence relation. The remaining 18 terms 
then provide a :heck on the recurrence relation. This recurrence relation among the 
coefficients is equivalent to the following differential equation for the generating 
function: 
P ” ( x ) ( x ~  - 8x3+ 1 6 ~ ~ )  - P ’ ( x ) ( ~ . ~ x  - 5Ox2+64x3) + P ( x ) (  15 - 5 7 ~  + 3 6 ~ ~ )  

= 15 -44x + 22x2 - 7 x 3 .  (13) 

(14) 

(15) 

To solve this equation, we first make the substitution U =4x, then write 

f ( u )  = [(U - l ) / U l 2 P ( U )  

~ ( 1 -  u)j”( U )  + ( 4 ~  -4.5)f’( U )  -2.25f(~) = (1 - U ) P ( U ) / U ’  

which transforms the differential equation into 
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where p ( u )  = 15 - l l u  + 1.375u2+0.109 375u3. The corresponding homogeneous 
differential equation is readily seen to be the degenerate hypergeometric function: 

F(-1/2,  -9/2; -9/2; U )  = ( 1  - u ) ’ / ~ F ( - ~ ,  0; -9/2; U )  = ( 1  - u ) ” ~  (16) 
To solve the inhomogeneous equation by the method of reduction of order we write 
f(u) = (1 - U ) ” ~ U ( U ) ,  which gives upon substitution 

dv/du = ( 1 - u ) ~ ’ ~ (  C U ” ~  - 2 f 3  + 4u2 - 9/4u + $ + ~ / 3 2 ) .  (17) 
From the fact that the required solution is an expansion in powers of x, and hence U, 
it follows that c = O  (or else powers of u ” ~  would be present). Integration of (3.7) 
and substitution of the early terms of the series to identify the constant of integration 
yields the solution 

That is, the generating function has a ‘critical point’ at x = 4, with critical exponent 2 
and confluent exponent 1.5. The generating function for the ‘staircase model’ studied 
by Lin er a1 is 

P(~)=(l-6~+11~~-4~~)/(1-4~)~-4~~/(1-4~)~/~. (18) 

m 

P(x) = c pznxn  =;-x-;(l-4x)’/2 (19) 
n =O 

which can be seen to have the same critical point as the cQnvex polygon generating 
function, but with critical exponent -;. Thus there are n2.’ more convex polygons 
than staircase polygons. The generating function for self-avoiding polygons on the 
square lattice in contrast has a critical point at x ~ 0 . 1 4 3  68 . .  . with exponent -: so 
that the convex polygons constitute an exponentially small subset of the SAP. 

Note too that the recurrence relation (3.2) is not unique. Indeed, it is clear from 
the solution (3.8) that a homogeneous recurrence relation, and hence differential 
equation, will represent the solution (18). 

The enumeration of convex polygons has allowed us to extend the enumeration of 
SAP on the square lattice to 56 terms and should allow us to extend the honeycomb 
SAP to 76 or 82 steps. The generation and analysis of this series is the subject of a 
subsequent paper (Guttmann and Enting 1988). The calculation of the generating 
function for convex polygons, while non-rigorous, is undoubtedly correct and con- 
stitutes an exact solution of an interesting combinatorial and statistical mechanical 
problem. 

The singularity structure is also illuminating. A dominant exponent is followed by 
a confluent square root singularity. We believe a similar structure exists for the general 
SAP problem, with the additional subtlety that, as the exponent of the SAP generating 
function is -1.5, corresponding to a cusp-like singularity, the confluent square root 
singularity has an integral exponent, which ‘folds into’ the additive analytic background 
term. In contrast, the simpler staircase model of Lin er a1 (1987) displays no such 
confluence, prompting them to remark that their model does not support non-integral 
correction-to-scaling exponents in the self-avoiding walk problem. It is clear from our 
solution that such confluent exponents are to be expected. 

An additional benefit of this solution is that it represents an exactly solvable model 
with a confluent exponent, and so should serve as a useful benchmark for methods of 
series analysis which lay claim to being able to unravel such singularity structures. 

This work has been supported by the Australian Research Grants Scheme through a 
grant to AJG. 
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